Formation of novel conjugated polycarbon-metal systems *via* metal migration on a $M-C\equiv C-C\equiv C-M$ linkage

Munetaka Akita,* Min-Chul Chung, Aizoh Sakurai and Yoshihiko Moro-oka

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. E-mail: makita@res.titech.ac.jp

Received (in Cambridge, UK) 9th May 2000, Accepted 1st June 2000

Reactions of butadiynediyldimetal complexes, $Fp^*-C=C-C=C-M(\eta^5-C_5R_5)(CO)_2 1$ [M = Fe, Ru; R = Me, H; Fp* = FeCp*(CO)_2], with group 8 metal carbonyls result in migration of a σ -bonded metal fragment along the C₄ rod to form novel highly conjugated polycarbon-metal systems; the zwitterionic μ -but-2-yn-1-ylidene-4-ylidyne complex Ru₃(CO)₁₀(μ_3 -C-C=C- μ -C)Fe₂Cp*₂(CO)₃ 2, and the dimerized product with a cumulenic μ -C₈ ligand (Cp*Fe)₄-Ru₂(CO)₁₃[μ_6 -C₈-C(=O)] 3, via 1,4-migration and the zwitterionic acetylide cluster-type product Fp*+[Cp(CO)₂Ru-(η^2 -C=C)-(μ_3 -C=C)Fe₃(CO)₉]⁻ 4, via 1,3-migration.

Increasing attention focused on polycarbon–transition metal complexes stems originally from their relevance to surface bound carbide intermediates¹ and recently from their intriguing chemical and physical properties which are potentially applicable to new molecular devices.² However, neither interaction modes nor synthetic methods have been thoroughly exploited. During the course of our synthetic study of polycarbon cluster compounds derived from polyynediyldimetal complexes M–(C=C)_n–M [n = 1-6; M = Fe or Ru(η^5 -C₅R₅)(CO₂],³ we observed formation of novel highly conjugated polycarbon–transition metal systems resulting from migration of a σ -bonded metal fragment along the carbon rod. Herein we report results of interaction of butadiynediyl complexes **1** (n = 2) with group 8 metal carbonyl species.

Reaction of the butadiynediyldiiron complex **1a** [Scheme 1, $Fp^* = FeCp^*(CO)_2$; $Cp^* = \eta^{5} \cdot C_5Me_5]^{3b}$ with $Ru_3(CO)_{12}$ in refluxing CH_2Cl_2 gave a mixture of products, from which two compounds **2** and **3a** were isolated after TLC separation (silica gel). For the purple red product **2**,[†] the single Cp^* NMR signal and the highly deshielded ¹³C NMR signal (δ_C 347.1) suggested formation of a symmetrical cluster compound **2'** bearing a cumulenic > C=C=C=CFe_2 fragment but X-ray crystallography of its η^5 -C₅Me₄Et derivative **2**[#][‡] [Fig. 1(a)] revealed a mirror symmetrical zwitterionic but-2-yne-1-ylidene-4-ylidyne structure⁵ with (i) a C₄ bridge showing long–short–long bond alternation and (ii) μ_3 -coordination of the C4 and C23 atoms. Contribution of the neutral butatrienetetrayl structure **2'**,

Fig. 1 Molecular structures of $2^{#}$ (a) and 3a (b) drawn at the 30% probability level. Selected parameters: $2^{#}$: Fe–C1 1.906(6), 1.885(9), C1–C2 1.31(1), C2–C3 1.25(1), C3–C4 1.34(1), C4–Ru 2.093–2.120(9), Ru–Ru 2.749–2.781(1), Fe1–Fe2 2.530(2) Å; Fe–C1–C2 137.4(6), 138.8(7), C1–C2–C3 179(1), C2–C3–C4 177.4(8), Ru1–C4–C3 133.4(6), Ru2–C4–C3 132.3(7), Ru3–C4–C3 126.0(6)°. **3a**: C1–C2 1.202(8), C2–C3 1.443(8), C3–C4 1.408(7), C3–C9 1.538(8), C4–C5 1.415(7), C5–C6 1.315(8), C6–C7 1.308(7), C7–C8 1.285(7), Fe1–C1 1.912(6), Ru2–C3 2.291(5), Fe2–C4 2.024(5), Ru2–C4 2.279(5), Ru1–C5 2.228(5), Ru2–C5 2.128(5), Ru1–C6 2.458(5), Fe3–C8 1.934(6), Fe4–C8 1.924(6), Ru1–C9 2.118(6), Ru1–Ru2 2.7453(7), Fe3–Fe4 2.542(1) Å; Fe1–C1–C2 176.4(5), C1–C2–C3 168.7(6), C2–C3–C4 128.2(5), C2–C3–C9 114.7(4), C4–C3–C9 113.0(4), C3–C4–C5 112.5(5), C4–C5–C6 144.1(5), Ru1–C5–Ru2 78.1(2), C5–C6–C7 168.4(6), C6–C7–C8 176.4(6), Ru1–C9–C3 110.3(3)°.

however, is evident, since (i) the C₄ rod is slightly tilted toward Ru3 as indicated by the C3–C4–Ru angles and (ii) the C–C distances of the μ -C–C≡C–C moiety are averaged to some extent. It should be noted that the (μ -C₄)Fe₂Cp*₂(CO)₃ structure results from 1,4-migration of the iron fragment along the C₄ rod, *i.e.* the FeCp*(CO)_n fragment is shifted from one end of the C₄ bridge to the other upon interaction with Ru₃(CO)₁₂. The NMR spectrum of the other deep purple red complex **3a**[†] contained four sets of Cp* signals indicating oligomerization of **1a**, and X-ray crystallography[‡] [Fig. 1(b)] revealed a hexanuclear structure with a dimerized C₈ skeleton. Again, formation of the new C₈ carbon linkage involves 1,4-migration (C5 → C8) of the iron fragment. The migration induces a change of part of the polyyne structure into a cumulenic moiety (C8=C7=C6=C5) with similar C–C distances. Although the pentatetraenylidene structure **3a**' π -bonded to the two ruthenium atoms is a possible canonical structure of **3a**, the bent C5–

Chart 1

C4–C3 moiety with similar C–C and Ru2–C distances reveals η^3 -allyl coordination to Ru2. The linear C3–C2–C1–Fe1 moiety is a normal η^1 -acetylide structure. Coordination of the perpendicularly projected, adjacent cumulenic π orbitals of the C6–C5 and C5–C4 bonds to the two ruthenium atoms connected by a Ru–Ru bond⁶ leads to strain, which is relieved by formation of a larger membered ring structure *via* CO-insertion [CO(9)]. The C₈ bridge was also characterized by ¹³C NMR spectroscopy.† Except for the deshielded C8 signal (δ_C 254.7), the other signals appeared in a rather narrow range (δ_C 157–107).

The isostructural C₈ complex **3b**[†] was obtained from the Fe, Ru-mixed metal butadiynediyl complex, Fp*-C=C-C=C-RuCp*(CO)₂ **1b**,⁴ upon treatment with Ru₃(CO)₁₂.§ Complex **3b** consisted of a mixture of two inseparable isomers, **3b'** and **3b''** (Chart 1), as indicated by NMR data containing two sets of signals as well as the successful X-ray structural analysis taking into account a disordered structure containing two components. It should be noted that no homometallic complexes (M1 = M2 = Ru or Fe) were detected by NMR and FD-MS analyses suggesting an intramolecular mechanism for the migration.

Another example of metal migration was observed for reaction of Fp*–C=C–RuCp(CO)₂ **1c** [Cp(η^5 -C₅H₅) derivative of **1b**] with Fe₂(CO)₉, a group 8 metal carbonyl.§ The deshielded ¹³C NMR signal (δ_C 193.7) of the resultant purple Fe₃-adduct **4** (Chart 1)† suggested formation of a μ -acetylide cluster compound,⁷ and X-ray crystallography‡ revealed a pentanuclear structure consisting of a cationic dinuclear μ – η^1 : η^2 -acetylide complex part and an anionic trinuclear μ_3 -acetylide cluster type structure. The structure of each component is normal, and the diamagnetic nature of **4** can be interpreted in terms of the zwitterionic structure, each metal center in which is coordinatively saturated.

In conclusion, interaction of the butadiynediyl complexes 1 with group 8 metal carbonyls results in the formation of novel highly conjugated polycarbon-metal cluster systems. The structures of 2 and 3 suggest the occurrence of stepwise metal migration along the carbon rod, and the C₈ linkage in 4 is formed via 1,4-migration on a ruthenacyclopentadiene intermediate 5 resulting from oxidative metallacyclization of 1 (Chart 1).8 Noteworthy features of the present system are as follows. The formation of zwitterionic structures such as 2 and 4 are regarded as typical of electron transfer through unsaturated carbon rods. Another feature is the flexible coordination mode of the $C(sp)_n$ system. For example, in the case of interaction with trimetallic species, the C4 ligand can behave as a three- $(\mu_3 - \eta^1 - C_4 \text{ like C4 in } 2)$ to seven-electron donor $(\mu - \eta^3 - \eta^3$ propargylidene-ketene).^{3c} When combined with coordination of CO ligands, which can act as either one- or two-electron donors, various intermediates have many opportunities to attain coordinative saturation by switching coordination modes of the C₄ and/or CO ligands.

We are grateful to the Yamada Science Foundation for financial support of this research.

Notes and references

† Selected spectroscopic data: **2** (7%): $\delta_{H}(CD_{2}Cl_{2})$ 1.71 (Cp*). $\delta_{C}(CD_{2}Cl_{2}, -90$ °C) 347.1 (C1), 216.7 (C4), 119.0, 118.4 (C3≡C4); 269.1 (µ₃-CO), 268.3 (µ-CO), 211.1 (Fe–CO), 196.9 (Ru–CO). IR(CH₂Cl₂) ν (C≡C) 2081; ν (CO) 2047, 2008, 1961, 1903; ν (µ-CO) 1801; ν (µ₃-CO) 1700 cm⁻¹. **3a** (10%) $\delta_{H}(CDCl_{3})$ 1.92, 1.86, 1.73, 1.68 (Cp*). $\delta_{C}(CDCl_{3})$ 254.7 (µ-C=); 157.3, 134.0, 129.0, 128.9, 111.5, 108.8, 106.8 (C1–C7); 274.9 (µ-CO); 225.7 (>C=O); 218.0, 216.0, 215.6, 214.5, 213.2, 200.0, 198.6, 197.1, 193.7 (CO). IR(CH₂Cl₂) ν (C≡C) 2060; ν (CO) 2030, 1801, 2015, 1996, 1961, 1954, 1895, ν (µ-CO) 1780, ν (>C=O) 1575 cm⁻¹. **3b** (12%):§ $\delta_{H}(CDcl_{3})$ 5.56 (Cp), 1.97 (Cp*). $\delta_{C}(CDCl_{3})$ 193.7, 144.0, 123.3, 104.8 (C4); 216.0, 215.0, 1968 (CO). IR(CH₂Cl₂) ν (CC) 2047, 2036, 1995, 1982, 1962, 1939; ν (C=C) 1606 cm⁻¹.

[‡] X-Ray diffraction measurements were made on a Rigaku RAXIS IV imaging plate area detector with graphite-monochromated Mo-Kα radiation ($\lambda = 0.71069$ Å) at -60 °C. *Crystal data*: **2**[#]: C₄₂H₄₁O₁₃Fe₂Ru₃, M = 1168.7, monoclinic, space group P2₁/c, a = 15.445(1), b = 16.481(2), c = 18.873(3) Å, $\beta = 112.60(1)^\circ$, V = 4435.2(10) Å³, Z = 4, $D_c = 1.75$ g cm⁻³, $\mu = 17.0$ cm⁻¹, R1 = 0.068 for the 8584 unique data with $F > 4\sigma(F)$ (wR2 = 0.212 for all 9332 data) and 552 parameters. **3a**: C₆₈H₇₄O₁₄Fe₄Ru₂, M = 1540.9, monoclinic, space group P2₁/n, a = 13.323(2), b = 18.681(9), c = 26.420(4) Å, $\beta = 93.023(7)^\circ$, V = 6566(2) Å³, Z = 4, $D_c = 1.56$ g cm⁻³, $\mu = 13.7$ cm⁻¹, R1 = 0.064 for the 10696 unique data with $F > 4\sigma(F)$ (wR2 = 0.173 for all 11815 data) and 815 parameters. Details of **4** are included in the supplementary material. CCDC 182/1669.

§ Other products: from **1b**: Fp*–C=C–(μ_4 -C=C)Ru_4Cp*(CO)_{11} **6** (43%); from **1c**: Fp*–C=C–(μ_3 -C=C)Fe_2RuCp*(CO)_97 (7%) and (CO)_2Cp*Ru–(μ - η^3 -C_3)[Fe_2(CO)_6]–C(=C=O)–Fp* **8** (15%). Complexes **6** and **7** are acetylide cluster-type compounds and complex **8** contains a μ - η^3 -propargylidene-ketene ligand.^{3c} No characterizable product was obtained from Fp*–C=C–C=C–FeCp(CO)_2.

- M. Tachikawa and E. L. Muetterties, *Prog. Inorg. Chem.*, 1981, 28, 203;
 J. S. Bradley, *Adv. Organomet. Chem.*, 1983, 22, 1; D. F. Shriver and
 M. J. Sailor, *Acc. Chem. Res.*, 1988, 21, 374; W. Beck, B. Niemer and M. Wieser, *Angew. Chem., Int. Ed. Engl.*, 1993, 32, 923; H. Lang, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 547; U. Bunz, *Angew. Chem., Int. Ed. Engl.*, 1996, 35, 969; A. L. Balch and M. M. Olmstead, *Chem. Rev.*, 1998, 98, 2133; M. I. Bruce, *Chem. Rev.*, 1998, 98, 2797.
- R. Dembinski, T. Bartik, B. Bartik, M. Jaeger and J. Gladysz, J. Am. Chem. Soc., 2000, 122, 810; M. Brady, R. Dembinski and J. A.Gladysz, Angew. Chem., Int. Ed. Engl., 1996, 35, 414; M. Brady, W. Weng, Y. Zhou, J. W. Seylet, A. J. Amoroso, A. M. Arif, M. Böhme, G. Frenking and J. A. Gladysz, J. Am. Chem. Soc., 1997, 119, 775; T. Bartik, W. Weng, J. A. Ramsden, S. Szafert, S. B. Falloon, A. M. Arif and J. A. Gladysz, J. Am. Chem. Soc., 1998, 120, 11071; M. Guillemot, L. Toupet and C. Lapinte, Organometallics, 1998, 17, 1928; M. I. Bruce, B. D. Kelly, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1999, 847.
- 3 Reviews: for C₂ complexes: (a) M. Akita and Y. Moro-oka, Bull. Chem. Soc. Jpn., 1995, **68**, 420; C₄-C₁₂ complexes: (b) M. Akita, M.-C. Chung, A. Sakurai, S. Sugimoto, M. Terada, M. Tanaka and Y. Moro-oka, Organometallics, 1997, **16**, 4882; (c) M. Akita, M.-C. Chung, M. Terada, M. Miyauti, M. Tanaka and Y. Moro-oka, J. Organomet. Chem., 1998, **565**, 49; (d) M. Akita, A. Sakurai and Y. Moro-oka, Organometallics, 1999, **10**; (e) A. Sakurai, M. Akita and Y. Moro-oka, Organometallics, 1999, **18**, 3241; (f) M.-C. Chung, A. Sakurai, M. Akita and Y. Moro-oka, Organometallics, 1999, **18**, 4684.
- 4 Fp#–C₄–Fp# [Fp# = Fe(η⁵-C₅Me₄Et)(CO)₂] and **1b**,c were prepared by Cu-catalyzed coupling between Fp*– or Fp#–C₄H and the appropriate metal chloride according to ref. 3(b).
- 5 Zwitterionic complexes formed by electron transfer through C_x bridges have been reported: S. B. Falloon, A. M. Arif and J. A. Gladysz, *Chem. Commun.*, 1997, 629.
- 6 Related structurally characterized μ-η²: η²-allene complexes: E. L. Hoel, G. B. Ansell and S. Leta, *Organometallics*, 1986, 5, 585.
- 7 E. Sappa, A. Tiripicchio and P. Braunstein, *Chem. Rev.*, 1983, 83, 203;
 P. R. Raithby and M. J. Rosales, *Adv. Inorg. Chem. Radiochem.*, 1985, 29, 169.
- 8 R. J. Haines, in *Comprehensive Organometallic Chemistry II*, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol. 7, ch. 11.2.3.